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Abstract 

The project focuses on using scientific benchmarks to compare two prominent Java 

compilers included in two Java Development Kits (JDK), OpenJDK  and OracleJDK, based on the 

efficiency of the compiled programs. Installing two JDKs on two Ubuntu systems (with similar 

configurations) using VirtualBox, we ran each benchmark several times on each system by the 

built-in  Linux command line function to get results about runtime and memory usage.   

Overall, the result shows that programs compiled by OpenJDK compiler had lower 

efficiency in memory usage in both RAM and hard drive than programs compiled by the 

OracleJDK compiler. Furthermore, the overall runtime result points out that OpenJDK compiled 

programs also take more time to run, although it may not be obvious if we judge the benchmarks 

separately. 

1. Introduction 

By benchmarking Java compiled programs, we will determine which compiler generates 

the resulted compiled programs that require the least amount of time and space in RAM and in the 

computer’s hard drive to implement scientific and numerical computation. 
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This project allows one to use the best compiler when implementing complicated scientific 

Java programs, thus maximizing efficiency. It is important to select the right compiler before 

writing a Java program since the compiler affects the performance the most in Java Virtual 

Machine [8]. The efficiency of the compiler affects both the instruction count and average cycles 

per instructions of the resulting program when it translates high-level languages into computer 

instructions. Therefore, choosing which compiler to use that fits a specific numerical program is a 

crucial step for anyone who is working on Java applications. 

In addition, our decision to test Java compilers is also important due to the fact Dickinson 

College has a Java-based Computer Science curriculum. Our benchmarking result will provide 

additional information to Dickinson students to allow them to decide which compiler to use when 

compiling methods with Java. 

In this project, we consider two popular Java compilers in the industry. The former is of 

OpenJDK (Open Java Development Kit), which is a free and open source implementation of the 

Java Platform, Standard Edition (Java SE) [14]. The latter is of OracleJDK (Oracle Java 

Development Kit), which builds on OpenJDK by adding more features such as deployment code 

including Oracle’s implementation of Java Plugin and Java WebStart [9]. 

1.1. Performance aspects 

There are three aspects of performance to be measured in this project, namely runtime, memory 

usage and compiled file size. 

1. Runtime (part of the CPU time measured in seconds): We use CPU time to determine the 

amount of time a compiled program takes within a CPU when dealing with a scientific and 
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numerical computation. Runtime is important due to the fact that developers need to test the 

programs multiple times and that users often favor the fastest programs. 

2. Memory usage (Resident Set Size measured in kilobytes): We use Resident Set Size 

because it reflects the amount of space of physical memory (RAM) held by a specific process, 

which is ideal to measure the memory used when the benchmarks are run [12]. When memory 

requirement is too big after compilation, the compiled program may exhibit degradation. In such 

case, failures occur due to memory run-out and can result in the inefficient use of memory that can 

affect a larger system.  

3. Compiled file size (memory held in hard drive, measured in bytes): In fact, the compile file 

size also reflects a part of the amount of memory a compiled file requires. The difference is that 

this aspect focuses on the size of a static file, which means how efficiently a compiler can generate 

a file that takes the least amount of space on the computer’s hard drive. 

2. Methods 

2.1. Benchmarks 

In this project, most of our benchmarks are chosen from SciMark 2.0, which is a set of Java 

benchmarks for scientific and numerical computing. SciMark 2.0 consists of five computational 

kernels: FFT, Gauss-Seidel relaxation, Sparse matrix-multiply, Monte Carlo integration and dense 

LU factorization. These kernels are chosen to provide an indication of how well the underlying 

JVM/JITs perform on applications utilizing these types of algorithms. The problems sizes are 

purposely chosen to be small in order to isolate the effects of memory hierarchy and focus on 

internal JVM/JIT and CPU issues [11]. In addition, we also choose Binary Trees benchmark for 
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this project to provide objective results instead of merely focusing on SciMark. The Binary Trees 

benchmark comes from a project called “The Computer Language Benchmarks Game”, which has 

been previously used to compare programming languages in terms of time and memory usage. 

Since it is also a scientific benchmark, we want to see if there are significant differences between 

the results generated by this benchmark and those generated by the SciMark benchmarks. 

The brief descriptions of 6 benchmarks we use for this project are as follows: 

1. Binary Trees Benchmark: Allocates and deallocates many binary trees, then prints the time 

required to allocate and collect balanced binary trees of various sizes. Smaller trees result in shorter 

object lifetimes [7]. 

2. Fast Fourier Transform: Performs a one-dimensional forward transform of 4K complex 

numbers. This benchmark exercises complex arithmetic, shuffling, non-constant memory 

references and trigonometric functions. The first section performs the bit-reversal portion and the 

second performs the actual Nlog(N) computational steps [11]. 

3. Montel Carlo Integration: Approximates the value of π by computing the integral of the 

quarter circle y = sqrt(1 – x2) on [0,1]. It chooses random points with the unit square and compute 

the ratio of those within the circle. The algorithm exercises random-number generators, 

synchronized function calls, and function inlining [11]. 

4. Jacobi Successive Over-relaxation (SOR): Implemented on a 100x100 grid exercises 

typical access paterns in finite difference applications, for example, solving Laplace’s equation in 

2D with Drichlet boundary conditions. The algorithm exercises basic "grid averaging" memory 

patterns where each A(i,j) is assigned an average weighting of its four nearest neighbors [11]. 
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5. Dense LU Matrix Factorization: Computes the LU factorization of a dense 100x100 matrix 

using partial pivoting. Exercises linear algebra kernels (BLAS) and dense matrix operations. The 

algorithm is the right-looking version of LU with rank-1 updates [11]. 

6.  Sparse Matrix Multiplication: Uses an unstructured sparse matrix stored in compressed-

row format with a prescribed sparsity structure. This kernel exercises indirection addressing and 

non-regular memory references. A 1,000 x 1,000 sparse matrix with 5,000 nonzeroes is used [11]. 

These benchmarks are used mainly because they include a variety of scientific and 

numerical computation, which is the focus of this project. Moreover, they are solid Java programs 

that can be run with simple setup and have been tested by other programmers to generate sets of 

results about runtime and memory usage. Therefore, based on the existing results and explanation 

in the sources we found, the results from these benchmarks are reliable and can be used to serve 

the purpose of this project. 

2.2. System version and Configuration 

 To set up two equal running environments for two systems, we used the machine and 

softwares with configuration information in Table 2.1 to support our project. 

Table 2.1: System version and Configuration information  

 Description 

Computer iMac 2.7 GHz Intel Core i5 with 8 GB 

1600 MHz DDR3 

Virtual Box Version 5.1.0 r108711 

Operating Systems x64 Ubuntu 4GB base memory and  

100.0 GB fixed size storage 
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IDE Eclipse Oxygen for win64 

Compilers openjdk-8-jre and openjdk-8-jdk 

Oracle jdk1.8.0_151 

2.3. Installation 

 We created two versions of Ubuntu with the above configuration in VirtualBox. On the 

first system, called System 1, which represents the OpenJDK Compiler, we follow the instruction 

in Table 2.2. 

Table 2.2: Steps to install OpenJDK on System 1  

Installing OpenJDK 

1 

Download and install Eclipse Oxygen from 

https://www.eclipse.org/downloads/download.php?file

=/oomph/epp/oxygen/R/eclipse-inst-win64.exe 

2 

Download and install openjdk-8-jre and openjdk-8-jdk 

by running two command lines:[1] 

$ sudo apt-get install openjdk-8-jre 

$ sudo apt-get install openjdk-8-jdk 

 On the second system, called System 2, which represents the OracleJDK Compiler, we 

walk through the steps in Table 2.3. 

 

https://www.eclipse.org/downloads/download.php?file=/oomph/epp/oxygen/R/eclipse-inst-win64.exe
https://www.eclipse.org/downloads/download.php?file=/oomph/epp/oxygen/R/eclipse-inst-win64.exe
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Table 2.3: Steps to install OracleJDK on System 2  

Installing OracleJDK 

1 

Download and install Eclipse Oxygen from 

https://www.eclipse.org/downloads/download.php?file

=/oomph/epp/oxygen/R/eclipse-inst-win64.exe 

2 

Download OracleJDK jdk1.8.0_151 from 

http://www.oracle.com/technetwork/java/javase/downl

oads/jdk8-downloads-2133151.html 

3 

Install OracleJDK jdk1.8.0_151 by running these 

command lines: [2] 

$ tar zxvf jdk-8u151-linux-x64.tar.gz  

$ sudo mkdir /usr/lib/jvm 

$ sudo mv jdk1.8.0_151 /usr/lib/jvm 

$ sudo update-alternatives –install /usr/bin/java java 

/usr/lib/jvm/jdk1.8.0_151/bin/java 1 

$ sudo update-alternatives –install /usr/bin/javac 

javac /usr/lib/jvm/jdk1.8.0_151/bin/javac 1 

$ sudo update-alternatives –install /usr/bin/javaws 

javaws /usr/lib/jvm/jdk1.8.0_151/bin/javaws 1 

 

https://www.eclipse.org/downloads/download.php?file=/oomph/epp/oxygen/R/eclipse-inst-win64.exe
https://www.eclipse.org/downloads/download.php?file=/oomph/epp/oxygen/R/eclipse-inst-win64.exe
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
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2.4. Generating results 

 We downloaded the benchmarks’ source code and imported it into Eclipse. Then the 

programs were compiled through Eclipse by the installed compiler. To run the compiled programs, 

we opened the terminal window and directed to the folder containing the .class files, which is 

normally the bin folder within the Eclipse project. In the terminal window, we ran the following 

command:  

usr/bin/time –v java [.class fileName] 

What this command does is generating a list of information about runtime, memory usage 

and other attributes of the programs. [10] Here is an example of what appears when running this 

command: 

 

Figure 2.1: An example of results generated by usr/bin/time –v java 

FileName  command 

In order to get the information associated with the performance aspects mentioned above, 

we analyze these data: 
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1. Runtime (measured in seconds): Since our project focuses mainly on CPU time, we get 

the results for this aspect by noting down the User time, which reflects a part of the CPU time [5]. 

2. Memory usage (measured in kilobytes): To get the memory usage, we relied on the 

information from Resident set size section [15]. 

3. Compiled file size (measured in bytes): The compiled file size is shown in the properties 

of the .class file in the bin folder of the Eclipse project. 

In order to ensure the data’s consistency, for runtime and memory usage, we ran each 

benchmark five times and computed the arithmetic mean for each system. Since the compiled file 

size is relatively consistent, we only compiled the file once through Eclipse and get the size of the 

resulted .class files. Table 2.4 provides an example of the data we collected from running the 

benchmarking programs. 

Table 2.4: Data collected from running Fast Fourier Transform 

on System 1     

  Runtime (s) Memory 

usage (KB) 

Compiled file 

size (bytes) 

1st trial  7.18 25,660 

3,977 

2nd trial 7.18 27,592 

3rd trial 7.18 27,496 

4th trial 7.42 27,696 

5th trial 7.42 27,412 

With the data collected,  we then calculated the composite normalized results by averaging 

all the data for each benchmark using arithmetic mean since the data is not in forms of rates or 

percentages. After that, we normalized them to System 1 using equation 2.1. The normalized 

results were then composited using geometric mean by equation 2.2. 

𝑆𝑦𝑠𝑡𝑒𝑚 𝐴 =
𝑆𝑦𝑠𝑡𝑒𝑚 1

𝑆𝑦𝑠𝑡𝑒𝑚 𝐴
 (2.1) 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 =  √𝑥1. 𝑥2 … 𝑥𝑛
𝑛

. (2.2) 
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3. Results 

 From now on, we will refer to the system with OpenJDK as System 1 and the system with 

OracleJDK as System 2. Our result description is divided into two parts: Average data and 

Normalized composite result. 

3.1. Average data 

 Table 3.1 represents the average results of the data collected from each benchmark for three 

performance aspects. 

Table 3.1: Arithmetic mean of data after running each benchmark 5 times 

 Runtime (s) 
Memory usage 

(KB) 

Compiled File Size 

(Bytes) 

 System 

1 

System 

2 

System 

1 

System 

2 

System 

1 

System 

2 

Binary Tree 0.132 0.146 31,161.6 29,424 3,641 3,449 

Fast Fourier 

Transform 
7.276 7.196 27,171.2 24,924 3,977 3,951 

Monte Carlo 7.182 7.128 27,336 24,840.8 817 765 

Dense LU 

Matrix 

Factorization 

5.462 5.466 28,322.4 25,671.2 3,453 3,422 

SOR 13.022 7.602 29,749.6 24,675.2 1,145 1,119 

Sparse 

Matrix 

Multiplication 

7.726 7.646 26,700 24,705.6 1,012 986 

 Since runtime, memory usage and compiled file size were generated in seconds, kilobytes 

and bytes respectively, and it is ideal to have a fast, less space-consuming and small-sized 

compiled programs, smaller data accounts for better performance. 
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3.2. Normalized composite result 

The above data were then normalized to System 1 and the geometric mean was calculated 

for further comparison, which gave the below normalized composite results. The reason why we 

used geometric mean to average normalized results is to ensure consistency and not be strongly 

affected by one exceptional case due to its multiplicative property, which can be stated simply that 

the mean of the products equals the product of the mean [6]. 

In addition, we should note that the results are normalized to System 1 so that the larger 

the numbers are in System 2, the better the compiled programs in System 2 perform compared to 

those in System 1. 

3.2.1 Runtime 

Table 3.2: Normalized composite result on runtime of two systems  

Runtime 

   System 1   System 2 

Binary Tree   1.000 0.904 

Fast Fourier Transform   1.000 1.011 

Monte Carlo   1.000 1.008 

Dense LU Matrix Factorization   1.000 0.999 

SOR   1.000 1.713 

Sparse Matrix Multiplication 1.000 1.010 

Geometric Mean 1.000 1.081 

In Figure 3.1, although when running the first and fourth benchmarks, System 1’s 

compiled programs show higher efficiency compared to those of System 2, the programs 

are either slightly or dramatically lower than those of System 2 when we take the other 

benchmarks into consideration. However, since the cases in which the program in System 
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1 is better are trivial, the geometric mean of the normalized composite results still show 

higher efficiency for System 2.  

 

Figure 3.1: Normalized composite result on runtime of two systems  

3.2.2 Memory Usage 

Table 3.3: Normalized composite result on memory usage of two systems  

Memory Usage 

 System 1 System 2 

Binary Tree   1.000 1.059 

Fast Fourier Transform   1.000 1.090 

Monte Carlo   1.000 1.1 

Dense LU Matrix Factorization   1.000 1.103 

SOR 1.000 1.205 

Sparse Matrix Multiplication  1.000 1.08 

Geometric Mean 1.000 1.105 

It can be seen from Figure 3.2 that using the same source code, the compiled 

programs of System 1 take more space in RAM while running.  

It is also worth noting from the SOR benchmark that the result generated from 

System 1 shows much less efficiency than that from System 2, which is similar to the 

result we got for runtime. Another interesting point is that although the gaps between 
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System 1’s results and System 2’s results vary, the general trends of System 2 in Figure 

3.1 and Figure 3.2 are seemingly identical. From that observation, we can conclude that 

there is a correlation between time efficiency and memory efficiency. 

  

Figure 3.2: Normalized composite result on memory usage of two systems 

3.2.3 Compiled file size 

Table 3.4: Normalized composite result on compiled file size of two 

systems 

Compiled File Size 

  System 1  System 2 

Binary Tree   1.000 1.04 

Fast Fourier Transform   1.000 1.006 

Monte Carlo   1.000 1.067 

Dense LU Matrix Factorization   1.000 1.009 

SOR 1.000 1.023 

Sparse Matrix Multiplication  1.000 1.026 

Geometric Mean 1.000 1.028 

Similar to other performance aspects, the compiled programs that take less runtime and 

space in RAM also take less space in hard drive to store the files. To be more specific, as shown 

in figure 3.3, every benchmark we have after being compiled in System 1 takes more space to store 

the .class files than after being compiled in System 2.  



   
 

14 
 

 

Figure 3.3: Normalized composite result on compiled file size of two 

systems 

4. Discussion  

4.1 Conclusion 

 

Figure 3.4: Geometric mean of three performance aspects between two 

systems 

Overall, from previous results and the geometric mean of the normalized composite results 

(Figure 3.4), we can conclude on three points: 

1. System 2 performs better in every performance aspect that we consider in this 

project. Moreover, the results also reflect the similarity between the figure of runtime and that of 
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memory usage. To be more specific, when we take any benchmark into consideration, if the 

compiled program in one system takes longer to run in the CPU than in another system, it is likely 

that the program will also use more memory in the computer’s RAM. More interestingly, it is also 

worth noting that a benchmark with larger or smaller normalized composite results than other 

benchmarks in runtime also has larger or smaller normalized composite results in memory usage 

as well. 

2. While programs compiled by OpenJDK shows 8.1% and 10.5% better performance 

than programs compiled by OracleJDK in terms of runtime and memory usage respectively, the 

latter’s performance regarding compiled file size is just slightly better (2.8%) than that of the 

former. From this observation, if all three aspects are taken into consideration when choosing 

compilers, compiled file size is less important compared to the other two aspects.   

3. Comparing Binary Tree benchmark’s data to those of other benchmarks, we can 

see that there are not much difference between them. In particular, although for runtime, Binary 

Tree benchmark shows a slight difference in which System 1 with OpenJDK compiler runs faster 

than System 2 with OracleJDK compiler, the results are similar regarding memory usage and 

compiled file size. 

In brief, according to the obtained results and depending on the characteristics of the 

scientific and numerical computing programs, we can decide to use OracleJDK if the only aspects 

we focus on are just runtime, memory usage, and compiled file size. 

4.2 Limitations and further work 

The decision whether or not to choose a compiler is not limited to these three performance 

aspects, since some optimizing compilers are designed with optimizations such as loop 
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optimizations and controlling optimizations that minimize or maximize some attributes of an 

executable computer program [4, 15]. Future work includes generating results for a wider range of 

performance aspects and benchmarks so that we will be able to ultimately decide on which 

compilers we should choose according to our priority. 

Since this project focuses mostly on benchmarks within a same source (SciMark), the 

reliability of the results is not guaranteed. Although in fact, these benchmarks compute different 

sets of data and have different behaviors, they are written by only one group of people. Instead, 

the result can be more objective and the decision can be more precisely made if we can take more 

benchmarks from different sources into account and see if the data they generate have the same 

pattern as the data we already have. 

 Moreover, there are also other limitations during our process of generating results. Firstly, 

since the CPU includes both System time and User time, in that User time is the amount of CPU 

time spent outside the kernel and System time is the amount of CPU time spent within the kernel 

[5], there may be a different set of results if we consider the CPU time as the sum of these two 

values. In addition, when the full amount of space required by a process exceeds the Resident Set 

Size, the remaining portion is typically stored in swap. Therefore, the results can be more precise 

if we also consider swap space as part of the memory usage, especially when dealing with large 

programs [12]. 

 Another limitation of the results is that due to the nature of these benchmarks, the Java 

Virtual Machine (JVM) was not “properly” warmed up, which means the classes were not cached 

beforehand. In fact, when classes are pushed into the JVM cache, they will be accessible faster 

during runtime than when the requests are first made [3]. Although it can be seen that in the Binary 

Trees Benchmark, the process of warming up the JVM is implied through the creation of many 
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binary trees before giving the final results, additional work should be done to ensure that all the 

benchmarks actually warm up the JVM by loading a number of classes before starting the main 

program.  
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Appendix 

These are the revisions I made to my draft after the writing workshop: 

1. In the introduction, I clarify more about OpenJDK and OracleJDK for readers who do not 

know that they are. I also added some ideas regarding the significance of this the decision to be 

made and how considering which Java compilers to use would be crucial. 

2. I added more information to describe what my benchmarks are and how they work 

responding to the questions on the course website. Also, I listed out some reasons why I chose 

them and how they would contribute to the results of my project. 

3. In the Methods section, I add a brief explanation about what I will do with the data 

collected, including how I normalize and composite the results. An example of the data collected 

in 5 trials is also provided for clarification. 

4. I move the “Conclusion” part from Results to Discussion since my discussion should also 

include the decision I made and the link between the data collected and my decision.  

5. I also added my point of view about using benchmarks from SciMark and using those 

from other sources. As a result, I found out some interesting similarities between the data and the 

limitation of my project. 
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