

1

OpenJDK and OracleJDK: Which compiler generates faster, more memory-

efficient compiled scientific and numerical computing Java programs?

Quan Chau

8 December, 2017

Abstract

The project focuses on using scientific benchmarks to compare two prominent Java

compilers included in two Java Development Kits (JDK), OpenJDK and OracleJDK, based on the

efficiency of the compiled programs. Installing two JDKs on two Ubuntu systems (with similar

configurations) using VirtualBox, we ran each benchmark several times on each system by the

built-in Linux command line function to get results about runtime and memory usage.

Overall, the result shows that programs compiled by OpenJDK compiler had lower

efficiency in memory usage in both RAM and hard drive than programs compiled by the

OracleJDK compiler. Furthermore, the overall runtime result points out that OpenJDK compiled

programs also take more time to run, although it may not be obvious if we judge the benchmarks

separately.

1. Introduction

By benchmarking Java compiled programs, we will determine which compiler generates

the resulted compiled programs that require the least amount of time and space in RAM and in the

computer’s hard drive to implement scientific and numerical computation.

2

This project allows one to use the best compiler when implementing complicated scientific

Java programs, thus maximizing efficiency. It is important to select the right compiler before

writing a Java program since the compiler affects the performance the most in Java Virtual

Machine [8]. The efficiency of the compiler affects both the instruction count and average cycles

per instructions of the resulting program when it translates high-level languages into computer

instructions. Therefore, choosing which compiler to use that fits a specific numerical program is a

crucial step for anyone who is working on Java applications.

In addition, our decision to test Java compilers is also important due to the fact Dickinson

College has a Java-based Computer Science curriculum. Our benchmarking result will provide

additional information to Dickinson students to allow them to decide which compiler to use when

compiling methods with Java.

In this project, we consider two popular Java compilers in the industry. The former is of

OpenJDK (Open Java Development Kit), which is a free and open source implementation of the

Java Platform, Standard Edition (Java SE) [14]. The latter is of OracleJDK (Oracle Java

Development Kit), which builds on OpenJDK by adding more features such as deployment code

including Oracle’s implementation of Java Plugin and Java WebStart [9].

1.1. Performance aspects

There are three aspects of performance to be measured in this project, namely runtime, memory

usage and compiled file size.

1. Runtime (part of the CPU time measured in seconds): We use CPU time to determine the

amount of time a compiled program takes within a CPU when dealing with a scientific and

3

numerical computation. Runtime is important due to the fact that developers need to test the

programs multiple times and that users often favor the fastest programs.

2. Memory usage (Resident Set Size measured in kilobytes): We use Resident Set Size

because it reflects the amount of space of physical memory (RAM) held by a specific process,

which is ideal to measure the memory used when the benchmarks are run [12]. When memory

requirement is too big after compilation, the compiled program may exhibit degradation. In such

case, failures occur due to memory run-out and can result in the inefficient use of memory that can

affect a larger system.

3. Compiled file size (memory held in hard drive, measured in bytes): In fact, the compile file

size also reflects a part of the amount of memory a compiled file requires. The difference is that

this aspect focuses on the size of a static file, which means how efficiently a compiler can generate

a file that takes the least amount of space on the computer’s hard drive.

2. Methods

2.1. Benchmarks

In this project, most of our benchmarks are chosen from SciMark 2.0, which is a set of Java

benchmarks for scientific and numerical computing. SciMark 2.0 consists of five computational

kernels: FFT, Gauss-Seidel relaxation, Sparse matrix-multiply, Monte Carlo integration and dense

LU factorization. These kernels are chosen to provide an indication of how well the underlying

JVM/JITs perform on applications utilizing these types of algorithms. The problems sizes are

purposely chosen to be small in order to isolate the effects of memory hierarchy and focus on

internal JVM/JIT and CPU issues [11]. In addition, we also choose Binary Trees benchmark for

4

this project to provide objective results instead of merely focusing on SciMark. The Binary Trees

benchmark comes from a project called “The Computer Language Benchmarks Game”, which has

been previously used to compare programming languages in terms of time and memory usage.

Since it is also a scientific benchmark, we want to see if there are significant differences between

the results generated by this benchmark and those generated by the SciMark benchmarks.

The brief descriptions of 6 benchmarks we use for this project are as follows:

1. Binary Trees Benchmark: Allocates and deallocates many binary trees, then prints the time

required to allocate and collect balanced binary trees of various sizes. Smaller trees result in shorter

object lifetimes [7].

2. Fast Fourier Transform: Performs a one-dimensional forward transform of 4K complex

numbers. This benchmark exercises complex arithmetic, shuffling, non-constant memory

references and trigonometric functions. The first section performs the bit-reversal portion and the

second performs the actual Nlog(N) computational steps [11].

3. Montel Carlo Integration: Approximates the value of π by computing the integral of the

quarter circle y = sqrt(1 – x2) on [0,1]. It chooses random points with the unit square and compute

the ratio of those within the circle. The algorithm exercises random-number generators,

synchronized function calls, and function inlining [11].

4. Jacobi Successive Over-relaxation (SOR): Implemented on a 100x100 grid exercises

typical access paterns in finite difference applications, for example, solving Laplace’s equation in

2D with Drichlet boundary conditions. The algorithm exercises basic "grid averaging" memory

patterns where each A(i,j) is assigned an average weighting of its four nearest neighbors [11].

5

5. Dense LU Matrix Factorization: Computes the LU factorization of a dense 100x100 matrix

using partial pivoting. Exercises linear algebra kernels (BLAS) and dense matrix operations. The

algorithm is the right-looking version of LU with rank-1 updates [11].

6. Sparse Matrix Multiplication: Uses an unstructured sparse matrix stored in compressed-

row format with a prescribed sparsity structure. This kernel exercises indirection addressing and

non-regular memory references. A 1,000 x 1,000 sparse matrix with 5,000 nonzeroes is used [11].

These benchmarks are used mainly because they include a variety of scientific and

numerical computation, which is the focus of this project. Moreover, they are solid Java programs

that can be run with simple setup and have been tested by other programmers to generate sets of

results about runtime and memory usage. Therefore, based on the existing results and explanation

in the sources we found, the results from these benchmarks are reliable and can be used to serve

the purpose of this project.

2.2. System version and Configuration

 To set up two equal running environments for two systems, we used the machine and

softwares with configuration information in Table 2.1 to support our project.

Table 2.1: System version and Configuration information

 Description

Computer iMac 2.7 GHz Intel Core i5 with 8 GB

1600 MHz DDR3

Virtual Box Version 5.1.0 r108711

Operating Systems x64 Ubuntu 4GB base memory and

100.0 GB fixed size storage

6

IDE Eclipse Oxygen for win64

Compilers openjdk-8-jre and openjdk-8-jdk

Oracle jdk1.8.0_151

2.3. Installation

 We created two versions of Ubuntu with the above configuration in VirtualBox. On the

first system, called System 1, which represents the OpenJDK Compiler, we follow the instruction

in Table 2.2.

Table 2.2: Steps to install OpenJDK on System 1

Installing OpenJDK

1

Download and install Eclipse Oxygen from

https://www.eclipse.org/downloads/download.php?file

=/oomph/epp/oxygen/R/eclipse-inst-win64.exe

2

Download and install openjdk-8-jre and openjdk-8-jdk

by running two command lines:[1]

$ sudo apt-get install openjdk-8-jre

$ sudo apt-get install openjdk-8-jdk

 On the second system, called System 2, which represents the OracleJDK Compiler, we

walk through the steps in Table 2.3.

https://www.eclipse.org/downloads/download.php?file=/oomph/epp/oxygen/R/eclipse-inst-win64.exe
https://www.eclipse.org/downloads/download.php?file=/oomph/epp/oxygen/R/eclipse-inst-win64.exe

7

Table 2.3: Steps to install OracleJDK on System 2

Installing OracleJDK

1

Download and install Eclipse Oxygen from

https://www.eclipse.org/downloads/download.php?file

=/oomph/epp/oxygen/R/eclipse-inst-win64.exe

2

Download OracleJDK jdk1.8.0_151 from

http://www.oracle.com/technetwork/java/javase/downl

oads/jdk8-downloads-2133151.html

3

Install OracleJDK jdk1.8.0_151 by running these

command lines: [2]

$ tar zxvf jdk-8u151-linux-x64.tar.gz

$ sudo mkdir /usr/lib/jvm

$ sudo mv jdk1.8.0_151 /usr/lib/jvm

$ sudo update-alternatives –install /usr/bin/java java

/usr/lib/jvm/jdk1.8.0_151/bin/java 1

$ sudo update-alternatives –install /usr/bin/javac

javac /usr/lib/jvm/jdk1.8.0_151/bin/javac 1

$ sudo update-alternatives –install /usr/bin/javaws

javaws /usr/lib/jvm/jdk1.8.0_151/bin/javaws 1

https://www.eclipse.org/downloads/download.php?file=/oomph/epp/oxygen/R/eclipse-inst-win64.exe
https://www.eclipse.org/downloads/download.php?file=/oomph/epp/oxygen/R/eclipse-inst-win64.exe
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

8

2.4. Generating results

 We downloaded the benchmarks’ source code and imported it into Eclipse. Then the

programs were compiled through Eclipse by the installed compiler. To run the compiled programs,

we opened the terminal window and directed to the folder containing the .class files, which is

normally the bin folder within the Eclipse project. In the terminal window, we ran the following

command:

usr/bin/time –v java [.class fileName]

What this command does is generating a list of information about runtime, memory usage

and other attributes of the programs. [10] Here is an example of what appears when running this

command:

Figure 2.1: An example of results generated by usr/bin/time –v java

FileName command

In order to get the information associated with the performance aspects mentioned above,

we analyze these data:

9

1. Runtime (measured in seconds): Since our project focuses mainly on CPU time, we get

the results for this aspect by noting down the User time, which reflects a part of the CPU time [5].

2. Memory usage (measured in kilobytes): To get the memory usage, we relied on the

information from Resident set size section [15].

3. Compiled file size (measured in bytes): The compiled file size is shown in the properties

of the .class file in the bin folder of the Eclipse project.

In order to ensure the data’s consistency, for runtime and memory usage, we ran each

benchmark five times and computed the arithmetic mean for each system. Since the compiled file

size is relatively consistent, we only compiled the file once through Eclipse and get the size of the

resulted .class files. Table 2.4 provides an example of the data we collected from running the

benchmarking programs.

Table 2.4: Data collected from running Fast Fourier Transform

on System 1

 Runtime (s) Memory

usage (KB)

Compiled file

size (bytes)

1st trial 7.18 25,660

3,977

2nd trial 7.18 27,592

3rd trial 7.18 27,496

4th trial 7.42 27,696

5th trial 7.42 27,412

With the data collected, we then calculated the composite normalized results by averaging

all the data for each benchmark using arithmetic mean since the data is not in forms of rates or

percentages. After that, we normalized them to System 1 using equation 2.1. The normalized

results were then composited using geometric mean by equation 2.2.

𝑆𝑦𝑠𝑡𝑒𝑚 𝐴 =
𝑆𝑦𝑠𝑡𝑒𝑚 1

𝑆𝑦𝑠𝑡𝑒𝑚 𝐴
 (2.1)

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 = √𝑥1. 𝑥2 … 𝑥𝑛
𝑛

. (2.2)

10

3. Results

 From now on, we will refer to the system with OpenJDK as System 1 and the system with

OracleJDK as System 2. Our result description is divided into two parts: Average data and

Normalized composite result.

3.1. Average data

 Table 3.1 represents the average results of the data collected from each benchmark for three

performance aspects.

Table 3.1: Arithmetic mean of data after running each benchmark 5 times

 Runtime (s)
Memory usage

(KB)

Compiled File Size

(Bytes)

 System

1

System

2

System

1

System

2

System

1

System

2

Binary Tree 0.132 0.146 31,161.6 29,424 3,641 3,449

Fast Fourier

Transform
7.276 7.196 27,171.2 24,924 3,977 3,951

Monte Carlo 7.182 7.128 27,336 24,840.8 817 765

Dense LU

Matrix

Factorization

5.462 5.466 28,322.4 25,671.2 3,453 3,422

SOR 13.022 7.602 29,749.6 24,675.2 1,145 1,119

Sparse

Matrix

Multiplication

7.726 7.646 26,700 24,705.6 1,012 986

 Since runtime, memory usage and compiled file size were generated in seconds, kilobytes

and bytes respectively, and it is ideal to have a fast, less space-consuming and small-sized

compiled programs, smaller data accounts for better performance.

11

3.2. Normalized composite result

The above data were then normalized to System 1 and the geometric mean was calculated

for further comparison, which gave the below normalized composite results. The reason why we

used geometric mean to average normalized results is to ensure consistency and not be strongly

affected by one exceptional case due to its multiplicative property, which can be stated simply that

the mean of the products equals the product of the mean [6].

In addition, we should note that the results are normalized to System 1 so that the larger

the numbers are in System 2, the better the compiled programs in System 2 perform compared to

those in System 1.

3.2.1 Runtime

Table 3.2: Normalized composite result on runtime of two systems

Runtime

 System 1 System 2

Binary Tree 1.000 0.904

Fast Fourier Transform 1.000 1.011

Monte Carlo 1.000 1.008

Dense LU Matrix Factorization 1.000 0.999

SOR 1.000 1.713

Sparse Matrix Multiplication 1.000 1.010

Geometric Mean 1.000 1.081

In Figure 3.1, although when running the first and fourth benchmarks, System 1’s

compiled programs show higher efficiency compared to those of System 2, the programs

are either slightly or dramatically lower than those of System 2 when we take the other

benchmarks into consideration. However, since the cases in which the program in System

12

1 is better are trivial, the geometric mean of the normalized composite results still show

higher efficiency for System 2.

Figure 3.1: Normalized composite result on runtime of two systems

3.2.2 Memory Usage

Table 3.3: Normalized composite result on memory usage of two systems

Memory Usage

 System 1 System 2

Binary Tree 1.000 1.059

Fast Fourier Transform 1.000 1.090

Monte Carlo 1.000 1.1

Dense LU Matrix Factorization 1.000 1.103

SOR 1.000 1.205

Sparse Matrix Multiplication 1.000 1.08

Geometric Mean 1.000 1.105

It can be seen from Figure 3.2 that using the same source code, the compiled

programs of System 1 take more space in RAM while running.

It is also worth noting from the SOR benchmark that the result generated from

System 1 shows much less efficiency than that from System 2, which is similar to the

result we got for runtime. Another interesting point is that although the gaps between

13

System 1’s results and System 2’s results vary, the general trends of System 2 in Figure

3.1 and Figure 3.2 are seemingly identical. From that observation, we can conclude that

there is a correlation between time efficiency and memory efficiency.

Figure 3.2: Normalized composite result on memory usage of two systems

3.2.3 Compiled file size

Table 3.4: Normalized composite result on compiled file size of two

systems

Compiled File Size

 System 1 System 2

Binary Tree 1.000 1.04

Fast Fourier Transform 1.000 1.006

Monte Carlo 1.000 1.067

Dense LU Matrix Factorization 1.000 1.009

SOR 1.000 1.023

Sparse Matrix Multiplication 1.000 1.026

Geometric Mean 1.000 1.028

Similar to other performance aspects, the compiled programs that take less runtime and

space in RAM also take less space in hard drive to store the files. To be more specific, as shown

in figure 3.3, every benchmark we have after being compiled in System 1 takes more space to store

the .class files than after being compiled in System 2.

14

Figure 3.3: Normalized composite result on compiled file size of two

systems

4. Discussion

4.1 Conclusion

Figure 3.4: Geometric mean of three performance aspects between two

systems

Overall, from previous results and the geometric mean of the normalized composite results

(Figure 3.4), we can conclude on three points:

1. System 2 performs better in every performance aspect that we consider in this

project. Moreover, the results also reflect the similarity between the figure of runtime and that of

15

memory usage. To be more specific, when we take any benchmark into consideration, if the

compiled program in one system takes longer to run in the CPU than in another system, it is likely

that the program will also use more memory in the computer’s RAM. More interestingly, it is also

worth noting that a benchmark with larger or smaller normalized composite results than other

benchmarks in runtime also has larger or smaller normalized composite results in memory usage

as well.

2. While programs compiled by OpenJDK shows 8.1% and 10.5% better performance

than programs compiled by OracleJDK in terms of runtime and memory usage respectively, the

latter’s performance regarding compiled file size is just slightly better (2.8%) than that of the

former. From this observation, if all three aspects are taken into consideration when choosing

compilers, compiled file size is less important compared to the other two aspects.

3. Comparing Binary Tree benchmark’s data to those of other benchmarks, we can

see that there are not much difference between them. In particular, although for runtime, Binary

Tree benchmark shows a slight difference in which System 1 with OpenJDK compiler runs faster

than System 2 with OracleJDK compiler, the results are similar regarding memory usage and

compiled file size.

In brief, according to the obtained results and depending on the characteristics of the

scientific and numerical computing programs, we can decide to use OracleJDK if the only aspects

we focus on are just runtime, memory usage, and compiled file size.

4.2 Limitations and further work

The decision whether or not to choose a compiler is not limited to these three performance

aspects, since some optimizing compilers are designed with optimizations such as loop

16

optimizations and controlling optimizations that minimize or maximize some attributes of an

executable computer program [4, 15]. Future work includes generating results for a wider range of

performance aspects and benchmarks so that we will be able to ultimately decide on which

compilers we should choose according to our priority.

Since this project focuses mostly on benchmarks within a same source (SciMark), the

reliability of the results is not guaranteed. Although in fact, these benchmarks compute different

sets of data and have different behaviors, they are written by only one group of people. Instead,

the result can be more objective and the decision can be more precisely made if we can take more

benchmarks from different sources into account and see if the data they generate have the same

pattern as the data we already have.

 Moreover, there are also other limitations during our process of generating results. Firstly,

since the CPU includes both System time and User time, in that User time is the amount of CPU

time spent outside the kernel and System time is the amount of CPU time spent within the kernel

[5], there may be a different set of results if we consider the CPU time as the sum of these two

values. In addition, when the full amount of space required by a process exceeds the Resident Set

Size, the remaining portion is typically stored in swap. Therefore, the results can be more precise

if we also consider swap space as part of the memory usage, especially when dealing with large

programs [12].

 Another limitation of the results is that due to the nature of these benchmarks, the Java

Virtual Machine (JVM) was not “properly” warmed up, which means the classes were not cached

beforehand. In fact, when classes are pushed into the JVM cache, they will be accessible faster

during runtime than when the requests are first made [3]. Although it can be seen that in the Binary

Trees Benchmark, the process of warming up the JVM is implied through the creation of many

17

binary trees before giving the final results, additional work should be done to ensure that all the

benchmarks actually warm up the JVM by loading a number of classes before starting the main

program.

Acknowledgements

 I would like to express my special thanks to Professor Braught for giving helpful advice

on running the benchmakrs and helping my team walk through each phase of this project.

 Secondly I would also like to thank my teammates Seongho Lee, Changsu Nam and Sam

Hrncir for having greatly contributed to the final outcomes.

References

1. 쌍쌍바나나. “Linux(Ubuntu)에 Java설치 및 환경 설정하는 방법”, Ourcstory, 2016,

<http://ourcstory.tistory.com/129>

2. 신씅. “우분투(Ubuntu) - Oracle JDK 설치하기”, Sseungshin, 2016,

<http://sseungshin.tistory.com/68>

3. Baeldung. “How to warm up the JVM.”, baeldung, 2017, http://www.baeldung.com/java-

jvm-warmup

4. Brais H. “Compilers – What every programmer should know about compiler

optimizations”, Microsoft Magazine, Feb 2015, https://msdn.microsoft.com/en-

us/magazine/dn904673.aspx

http://ourcstory.tistory.com/129
http://sseungshin.tistory.com/68
http://sseungshin.tistory.com/68
http://www.baeldung.com/java-jvm-warmup
http://www.baeldung.com/java-jvm-warmup
https://msdn.microsoft.com/en-us/magazine/dn904673.aspx
https://msdn.microsoft.com/en-us/magazine/dn904673.aspx

18

5. ConcrenedOfTunbridgeWells. “What do ‘real’, ‘user’ and ‘sys’ mean in the output of

time1?”, Stackoverflow, 2017, <https://stackoverflow.com/questions/556405/what-do-real-user-

and-sys-mean-in-the-output-of-time1>

6. Fleming, Philp J. & John J. Wallace. “How Not to Lie with Statistics: The Correct Way

to Summarize Benchmark Results.”, Communications of the ACM, Edited by Edgar H. Sibley,

vol. 29, no. 3, Mar. 1986.

7. Jarkko M. “binary-trees Java #7 program”, The Computer Language Benchmarks Game,

<http://benchmarksgame.alioth.debian.org/u64q/binarytrees-description.html#binarytrees>

8. Oaks S. “Chapter 4: Working with the JIT Compiler”, Safari Books Online,

<https://www.safaribooksonline.com/library/view/java-performance-

the/9781449363512/ch04.html>

9. Radai. “Differences between Oracle JDK and Open JDK and garbage

collection”Stackoverflow, 2014, < https://stackoverflow.com/questions/22358071/differences-

between-oracle-jdk-and-open-jdk-and-garbage-collection>

10. Roche A. “/usr/bin/time: not the command you think you know”, Hackernoon, 2017,

<https://hackernoon.com/usr-bin-time-not-the-command-you-think-you-know-34ac03e55cc3>

11. Roldan P. & Bruce M. “How fast is your Java platform for number crunching?”, SciMark

2.0, 2014, <http://math.nist.gov/scimark2/about.html>

12. Wikichip contributors. “Resident Set Size (RSS).” Wikichip, Computer Engineering, 11

Dec. 2015, < https://en.wikichip.org/wiki/resident_set_size>

13. Wikipedia contributors. "Resident set size." Wikipedia, The Free Encyclopedia, 24 Feb.

2017. Web. 21 Nov. 2017, <https://en.wikipedia.org/wiki/Resident_set_size>

14. Wikipedia contributors. "OpenJDK." Wikipedia, The Free Encyclopedia. Wikipedia, The Free

Encyclopedia, 15 Nov. 2017. Web. 5 Dec. 2017.

https://stackoverflow.com/questions/556405/what-do-real-user-and-sys-mean-in-the-output-of-time1
https://stackoverflow.com/questions/556405/what-do-real-user-and-sys-mean-in-the-output-of-time1
http://benchmarksgame.alioth.debian.org/u64q/binarytrees-description.html%23binarytrees
https://www.safaribooksonline.com/library/view/java-performance-the/9781449363512/ch04.html
https://www.safaribooksonline.com/library/view/java-performance-the/9781449363512/ch04.html
https://stackoverflow.com/questions/22358071/differences-between-oracle-jdk-and-open-jdk-and-garbage-collection
https://stackoverflow.com/questions/22358071/differences-between-oracle-jdk-and-open-jdk-and-garbage-collection
https://hackernoon.com/usr-bin-time-not-the-command-you-think-you-know-34ac03e55cc3
http://math.nist.gov/scimark2/about.html
https://en.wikichip.org/wiki/resident_set_size
https://en.wikipedia.org/wiki/Resident_set_size

19

15. Wikipedia contributors. "Optimizing compiler." Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 21 Nov. 2017. Web. 21 Nov. 2017,

< https://en.wikipedia.org/wiki/Optimizing_compiler#Types_of_optimization>

Appendix

These are the revisions I made to my draft after the writing workshop:

1. In the introduction, I clarify more about OpenJDK and OracleJDK for readers who do not

know that they are. I also added some ideas regarding the significance of this the decision to be

made and how considering which Java compilers to use would be crucial.

2. I added more information to describe what my benchmarks are and how they work

responding to the questions on the course website. Also, I listed out some reasons why I chose

them and how they would contribute to the results of my project.

3. In the Methods section, I add a brief explanation about what I will do with the data

collected, including how I normalize and composite the results. An example of the data collected

in 5 trials is also provided for clarification.

4. I move the “Conclusion” part from Results to Discussion since my discussion should also

include the decision I made and the link between the data collected and my decision.

5. I also added my point of view about using benchmarks from SciMark and using those

from other sources. As a result, I found out some interesting similarities between the data and the

limitation of my project.

https://en.wikipedia.org/wiki/Optimizing_compiler#Types_of_optimization

